New bounds for n4(k, d) and classification of some optimal codes over GF(4)

نویسندگان

  • Iliya Bouyukliev
  • Markus Grassl
  • Zlatko Varbanov
چکیده

Let n4(k; d) be the minimum length of a linear [n; k; d] code over GF(4) for given values of k and d. For codes of dimension "ve, we compute the exact values of n4(5; d) for 75 previously open cases. Additionally, we show that n4(6; 14)=24, n4(7; 9)=18, and n4(7; 10)=20. Moreover, we classify optimal quaternary codes for some values of n and k. c © 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Linear Codes Over GF(7) and GF(11) with Dimension 3

Let $n_q(k,d)$ denote the smallest value of $n$ for which there exists a linear $[n,k,d]$-code over the Galois field $GF(q)$. An $[n,k,d]$-code whose length is equal to $n_q(k,d)$ is called {em optimal}. In this paper we present some matrix generators for the family of optimal $[n,3,d]$ codes over $GF(7)$ and $GF(11)$. Most of our given codes in $GF(7)$ are non-isomorphic with the codes pre...

متن کامل

New linear codes over GF(8)1

Let [n, k, d]q-code be a linear code of length n, dimension k and minimum Hamming distance d over GF (q). One of the most important problems in coding theory is to construct codes with best possible minimum distances. Recently, the class of quasi-cyclic (QC) codes has been proven to contain many such codes. In this paper, thirty two codes over GF (8) are constructed (among them one optimal code...

متن کامل

New minimum distance bounds for linear codes over GF(5)

Let [n; k; d]q-codes be linear codes of length n, dimension k and minimum Hamming distance d over GF(q). In this paper, 32 new codes over GF(5) are constructed and the nonexistence of 51 codes is proved. c © 2003 Elsevier B.V. All rights reserved.

متن کامل

Quantum codes from cyclic codes over GF(4m)

We provide a construction for quantum codes (hermitian-self-orthogonal codes over GF (4)) starting from cyclic codes over GF (4). We also provide examples of these codes some of which meet the known bounds for quantum codes.

متن کامل

Construction of (sometimes) Optimal Linear Codes

For the purpose of error correcting linear codes over a finite field GF (q) and fixed dimension k we are interested in codes with high minimum distance d as these allow the correction of up to b(d− 1)/2c errors. On the other hand we are interested in codes with minimum redundancy, i.e. codes of small length n. High minimum distance and small length are controversial goals for the optimization o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 281  شماره 

صفحات  -

تاریخ انتشار 2004